High-order finite-difference methods for Poisson’s equation
نویسندگان
چکیده
منابع مشابه
High Order Stable Finite Difference Methods for the Schrödinger Equation
In this paper we extend the Summation–by–parts–simultaneous approximation term (SBP–SAT) technique to the Schrödinger equation. Stability estimates are derived and the accuracy of numerical approximations of interior order 2m, m = 1, 2, 3, are analyzed in the case of Dirichlet boundary conditions. We show that a boundary closure of the numerical approximations of order m lead to global accuracy...
متن کاملHigh-Order Compact Finite Difference Methods
In this work we present a general approach for developing high-order compact differencing schemes by utilizing the governing differential equation to help approximate truncation error terms. As an illustrative application we consider the stream-function vorticity form of the Navier Stokes equations, and provide driven cavity results. Some extensions to treat non-constant metric coefficients res...
متن کاملCompact finite difference methods for high order integro-differential equations
High order integro-differential equations (IDE), especially nonlinear, are usually difficult to solve even for approximate solutions. In this paper, we give a high accurate compact finite difference method to efficiently solve integro-differential equations, including high order and nonlinear problems. By numerical experiments, we show that compact finite difference method of integro-differenti...
متن کاملStable High-Order Finite Difference Methods for Aerodynamics
Svärd, M. 2004. Stable High-Order Finite Difference Methods for Aerodynamics (Stabila högordnings finita differens-metoder för aerodynamik). Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1026. vii, 25 pp. Uppsala. ISBN 91-554-6063-1 In this thesis, the numerical solution of time-dependent partial differential equation...
متن کاملHigh–order Finite Element Methods for the Kuramoto–sivashinsky Equation
Résumé. Nous considérons l’équation de Kuramoto–Sivashinskymunie de conditions aux limites périodiques et d’une donnée initiale. Nous l’approchons en utilisant une méthode d’éléments finis de type Galerkin pour la discrétisation en espace, et un schéma de Runge–Kutta implicite pour la discrétisation en temps. Nous obtenons des estimations d’erreur optimales et discutons de la linéarisation de c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1974
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1974-0362936-2